1. 首页
  2. 免费论文查重资讯

可微的定义(二元函数怎么判断可微)

对二元函数z=f(x,y),称它在点(x,y)可导是指它在点(x,y)处两个一阶偏导数都存在,则二元函数的连续,可导及可微的关系是

可微的定义(二元函数怎么判断可微)

多元函数的可导既不能推得连续,也不能推得可微。

题型一:讨论二元函数的可微性

讨论函数的可微性常用以下三种方法:

(1)利用可微的定义

(2)利用可微的必要条件:可微函数必可导,换言之,不可导的函数一定不可微;

(3)利用可微的充分条件:有连续的一阶偏导数的函数一定可微

以上三种办法中,方法一利用可微的定义判断可微性最常用,此时分以下两步进行:

  1. 考察f(x,y)在(x0,y0)处的偏导数是否都存在,如果f(x,y)在(x0,y0)处的偏导数中至少有一个不存在,则函数在(x0,y0)处不可微;如果都存在,则进行以下第二步;
  2. 考察如下极限是否成立?

可微的定义(二元函数怎么判断可微)

若上述极限成立,则函数在(x0,y0)处可微,否则就不可微。

例1:

可微的定义(二元函数怎么判断可微)

分析:利用定义证明。

证明:

可微的定义(二元函数怎么判断可微)

总结:本例给出一个两个一阶偏导数都不连续但函数可微的例子。

版权声明:本站部分文章来源或改编自互联网及其他公众平台,主要目的在于分享信息,版权归原作者所有,内容仅供读者参考,如有侵权请联系我们,如若转载,请注明出处:http://www.jucailoubg.com/7943.html

发表评论

电子邮件地址不会被公开。

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息